# Transitioning Countries, Cities, and Homes to 100% Clean, Renewable Wind, Water, Solar, and Storage For Everything

Mark Z. Jacobson Stanford University St. Gallen Forum/Renewables St. Gallen, Switzerland May 23, 2019

#### Wind, Water, Solar (WWS) Solution Electrify or Provide Direct Heat For All Sectors and Provide the Electricity and Heat with 100% WWS

| ELECTRICITY  | TRANSPORTATION   | HEATING/COOLING     | INDUSTRY              |
|--------------|------------------|---------------------|-----------------------|
| Wind         | Battery-electric | Electric heat pumps | Electric arc furnaces |
| Solar PV/CSP | HFC-BE hybrids   | Solar heat          | Induction furnaces    |
| Geothermal   |                  | Geothermal heat     | Resistance heaters    |
| Hydro        |                  | District heat/cold  | Dielectric heaters    |
| Tidal/Wave   |                  |                     | Electron beam heaters |

### **Onshore and Floating Offshore Wind**





### **PV Over Canal and Floating PV**



Left: 1 MW PV over canal in Gujarat State, India Right: 70 MW floating solar PV farm, Anhui Province, China





Left: 850 MW farm, Qinghai Province, Tibetan Plateau Right: 18.2 MW farm, Les Mees Plateau, France

### Electric & Hydrogen Fuel Cell Trucks and Buses



#### Tesla Semi-electric (850km)



Protera electric bus



#### Nikola One Semi-hydrogen fuel cell (1900 km)



#### Hydrogen fuel cell-electric hybrid bus

#### Planes: Replace Jet Fuel With Batteries & Hydrogen Fuel Cells Cryogenic hydrogen aircraft

Battery electric aircraft-Ampaire

Hydrogen fuel cell aircraft



HIGHNOPLINE

### **Electric Appliances**



Electric lift

Electric lawn mower

Electric leaf blower

# **Types of Storage for a 100% WWS System**

| ELECTRICITY            | HEATING/COOLING    | OTHER    |
|------------------------|--------------------|----------|
| CSP with storage       | Water tank         | Hydrogen |
| Pumped storage hydro   | Ice                |          |
| Existing hydroelectric | Underground        |          |
| Batteries              | Borehole           |          |
| Flywheels              | Water Pit          |          |
| Compressed air         | Aquifer            |          |
| Gravitational Storage  | Building materials |          |

### **Concentrating Solar Power**



Solar Reserve 110 MW CSP With 1.1 GWh of storage in Tonopah, Nevada

## **Stationary Battery Storage**



### **Gravitational Storage With Solid Masses**



#### **Stanford University 4th Generation District Heating System**



#### Seasonal Heat Storage in Underground Boreholes Okotoks, Canada





http://www.sustainapedia.com/drake-landing-solar-community/ https://www.leidos.com/project/north-america's-first- Mark Z. Jacobson (2015) right

#### Seasonal District Heat Storage in Covered Water Pit Vojens, Denmark



### Nighttime Storage in Ice for Daytime Air Cooling



Transitioning an Individual Home to Run on WWS Electricity/Storage and No Gas

## **Rooftop Solar Plus Battery Storage**



#### Ductless Mini-Split Electric Heat Pump Air Heater / Air Conditioner



#### **Electric Heat Pump Water Heater**



Photo by M.Z. Jacobson

## **Electric Induction Cooktop**



Photo by M.Z. Jacobson

One Year of Energy Use Generated 120% of all home and vehicle energy → No electric bill, natural gas bill, or gasoline bill Received \$530 from CCA for excess electricity to grid

Avoided costs of all-electric home Gas hookup fee: 3-8 K Gas pipes: 1-7 K Electric bill 1-3 K per year Natural gas bill 1-3 K per year Vehicle fuel bill 1-4 K per year Total: 4-15 K plus 3-10 K per year



### Can the World Transition to 100%, Clean, Renewable Energy for all Purposes?

### **Roadmaps for 143 Countries**

# **All-Purpose End-Use Power Demand**

| Year and Fuel Type                   | 143-      |
|--------------------------------------|-----------|
|                                      | Countries |
| 2015 End-use demand                  | 12.6 TW   |
| 2050 Demand with current fuels (BAU) | 20.2 TW   |
| 2050 Demand with WWS                 | 8.7 TW    |
| 2050 Demand reduction w/ WWS         | 57.1%     |
| 19.6% efficiency of BE, HFC v. ICE   |           |
| 3.5% efficiency of electric industry |           |
| 15.2% efficiency of heat pumps       |           |
| 12.1% eliminating fuel mining        |           |
| 6.6% efficiency beyond BAU           |           |

## Timeline for a Transition



#### Percent of 2050 143-Country End-Use Demand Supplied by WWS Devices and Number of New Devices

| TECHNO | OLOGY |
|--------|-------|
|        |       |

#### PCT SUPPLY 2050

| 5-MW onshore wind turbines     | 30.5% |
|--------------------------------|-------|
| 5-MW offshore wind turbines    | 14.5  |
| 5-kW Res. roof PV systems      | 11.1  |
| 100-kW com/gov roof PV systems | 13.8  |
| 50-MW Solar PV plants          | 19.0  |
| 100-MW CSP plants              | 3.93  |
| 100-MW geothermal plants       | 0.92  |
| 1300-MW hydro plants           | 5.72  |
| 1-MW tidal turbines            | 0.08  |
| 0.75-MW wave devices           | 0.34  |
|                                | 100%  |

#### Area Beyond 2018 Installations to Power 143 Countries for all Purposes With 100% WWS in 2050



Percent of 143-Country LandOnshore wind:0.45%Utility PV+CSP:0.12%Total0.57%

#### 3 Years of Results (2050-2052) From Study of Matching U.S. All-Sector Demand Exactly Every 30 Sec. With 100% WWS+Storage



Red = Energy supply Blue = Energy demand + change in storage + losses + shedding Levelized Cost of Energy for Each of 24 Regions Encompassing 143 Countries That Gives a Stable Grid Upon Electrification of all Energy Sectors With 100% WWS+Storage

World: 9.3 cents/kWh Capital Cost: \$92.3 trillion

Europe: 8.5 cents/kWh Capital cost: \$8 trillion

U.S.: 9.5 cents/kWh Capital cost: \$9.75 trillion

China: 8.5 cents/kWh Capital cost: \$24.4 trillion



## 2050 U.S. WWS vs. BAU Cost

BAU energyBAU fuel health cost<u>BAU fuel climate cost</u>Total conventional fuel electricity sector cost

\$2 trillion/yr \$0.6 trillion/yr <u>\$3.3 trillion/yr</u> \$5.9 trillion/yr

WWS replacing all BAU energy sectors \$0

\$0.85 tril/yr

WWS reduces energy cost 58% and economic (social) cost 86%

House Resolution H.Res.540, Senate Resolution S.Res.632 "...U.S. should support a transition to...100% clean renewable energy,..."

Senate Bill S.987, House Bills H.R.3314, 3671, 330 "100% clean and renewable energy by 2050" "100% clean and renewable energy by 2050" "100% clean, renewable energy by 2035" "100% renewable electricity by 2035"

Green New Deal 100% Renewable Energy for the U.S.

**Contributory Impacts of 100% WWS Roadmaps** 

Laws: Hawaii, California, Washington State 100% renewable electricity by 2045 Law: Washington D.C. 100% renewable electricity by 2035 Law: Puerto Rico 100% renewable electricity by 2050 Law: New Mexico Up to 100% renewable electricity by 2045 **Proposed 100% Laws** NY, IL, FL, MN, WI

Some of 120 Cities/Counties Committed to 100% Renewables Grand Rapids (MI) Sylva (NC) **Burlington (VT) Greensburg (KS)** Los Angeles (CA) Atlanta (GA) Park City (UT) Aspen (CO) **Orlando (FL)**, East Hampton (NY) Vancouver (BC) San Jose (CA) San Diego (CA) **Rochester (MN)** Santa Fe (NM) Honolulu (HI) Santa Monica (CA) WestChester (PA) Columbia (SC) Pueblo (CO) S. Lake Tahoe (CA) Palo Alto (CA) Boone (NC) **Nelson (BC)** San Francisco (CA) Moab (UT) St. Petersburg (FL) Abita Springs (LA) St. Louis (MO) **Georgetown (TX)** Madison (WI) Sarasota (FL) **Portland (OR)** Santa Barbara (CA) Salt Lake City (UT) Nevada City (NV) **Favetteville (AR) Boulder (CO) Oxford County (ON)** 

#### Some of the 176 Companies Committed to 100% Renewables

| IKEA       | Adobe          | Autodesk  | Coca Cola         |
|------------|----------------|-----------|-------------------|
| Google     | H&M            | HP        | Goldman-Sachs     |
| Microsoft  | Nestle         | Nike      | Johnson & Johnson |
| Apple      | S&P            | Starbucks | Walmart           |
| Workday    | T-Mobile       | AB InBev  | Bank of America   |
| Bloomberg  | BMW Group      | Burberry  | Citi              |
| Clif Bar   | Ebay           | Facebook  | Estee Lauder      |
| GM         | Goldman-Sachs  | HSBC      | Infosys           |
| Kellogg's  | Lego           | Mars      | Morgan Stanley    |
| Salesforce | Organic Valley | VM Ware   | Wells Fargo       |

Some of the 100+ NGOs Committed to 100% **The Solutions Project Environment America 100.Org Toxics Action Center Sierra Club Renewable Cities National People's Action** 350.Org Greenpeace Institute for Self-Reliance **Hip Hop Caucus** theRE100.org **Environmental Action** go100percent.org renewables100.org **Renewable Energy Long Island Climate Reality Emerald Cities Collaborative** iclei.org **Community Power** 

**Center for Community Change** 

**Asian Pacific Environmental Network** 

The Center for Working Families Miami Climate Alliance

#### Summary – Transitioning to 100% WWS

Creates millions more jobs than are lost worldwide Requires only 0.12% of land for footprint; 0.45% for spacing Avoids ~4-9 mil. air pollution deaths per year Slows then reverses global warming

Grids can stay stable throughout the world with 100%

WWS energy cost per kWh slightly less than that of fossils

WWS energy+health+climate costs per kWh are 1/4<sup>th</sup> that of fossils

Absolute WWS energy+health+climate costs are 1/8<sup>th</sup> that of fossils

#### **Roadmaps**

web.stanford.edu/group/efmh/jacobson/Articles/I/WWS-50-USState-plans.html

**Grid Studies** 

www.stanford.edu/group/efmh/jacobson/Articles/I/Combining.html

Infographic maps www.thesolutionsproject.org

**Twitter: @mzjacobson**